NextML is a self-training personalized recommendation strategy system. It adapts the digital experience individually to each user by extrapolating buying intent from user data and predicting products they might be interested in.
The strategy works as an exploratory and discovery algorithm, conveying recommendations that are likely to be titled “Recommended for you”. It's optimal for top-funnel experiences like email campaigns and on the site homepage. Both are the initial point of product discovery for most online shoppers.
This algorithm is available for the following page types: Homepage, Category, and Any, for e-commerce sections. To enable, contact your Customer Success Manager.
How does the NextML algorithm work?
To determine which item you're most likely to interact with next, Dynamic Yield uses a deep learning algorithm. Every time a user interacts with a product, we note all the recent products they have interacted with. The closer in time a user interacts with two different products, the stronger their association. Based on all user interactions, a model is built to determine how likely a user is to interact with product A after interacting with product B.
As each user browses your site and interacts with different products, we use the model to calculate which product is most strongly associated with the set of products in their recent history. This represents the product similar users interacted with. The results improve for users who have richer recent histories, but the algorithm is also effective for users who only have one product interaction, even during current sessions.
The algorithm is updated weekly, redefining all product associations based on your traffic. However, it takes into account the current user’s behavior in real time.
This algorithm is continuously improved and the logic is subject to change.
Prerequisites
- Dynamic Yield has been collecting data from your site for at least 30 days (data is collected as soon as you add the Dynamic Yield script to your site). There is no limit on feed size.
- This feature is part of AdaptML®, our self-training deep learning AI system. Contact your Customer Success Manager to learn more about AdaptML.
FAQ
How does this algorithm compare to collaborative filtering and user affinity?
These are all personalized recommendation algorithms that work with different technologies to provide items that are “Recommended for you”. Currently, the Deep Learning algorithm shows the best performance results in most cases when used on the homepage. It combines the best aspects of the other algorithms: The option to work in real time on feeds of any size (like user affinity) and the ability to continuously learn based on a predictive model (like collaborative filtering). We recommend starting off by testing this new algorithm in comparison to any other algorithm currently running on your site.